
Tips and tricks for using C++ I/O

Table of Contents

1. There are three header files to include when using C++ I/O
2. How to set the width of a printing field
3. By default, leading whitespace (carriage returns, tabs, spaces) is ignored by cin.
4. cin.getline() can run into problems when used with cin >> var.
5. Reading in numbers directly is problematic
6. Using getline to input numbers is a more robust alternate to reading numbers

directly
7. Once a file is opened, it may be used exactly as cin is used.
8. When reading an entire file, embed the file input inside of the loop condition
9. Getline can be told to stop grabbing input at any designated character
10. Delimited files can easily be read using a while loop and getline.
11. Using C++-style strings
12. How to prepare the output stream to print fixed precision numbers (3.40 instead of

3.4)

There are three header files to include when using C++ I/O

#include<iostream>
Include this file whenever using C++ I/O

#include<iomanip>
This file must be included if any C++ manipulators will be used. If you don't
know what a manipulator is, don't worry. Just include this file along with
iostream and you can't go wrong

#include<fstream>
Include this file whenever working with files.
By default, leading whitespace (carriage returns, tabs, spaces) is ignored by cin.

Given:

int i;
float fl;
cin >> fl;
cin >> i;
And you type: 3.14<return>42<return>

1. 3.14 is read into fl . The carriage return (newline) following the 3.14 is still
sitting on the input buffer.

2. Since cin ignores whitespace, the first return is "eaten" by cin >> i . Then the
integer 42 is read into i and the second return is left on the input buffer.

cin.getline() can run into problems when used with cin >> var.

• getline can be provided a third argument--a "stop" character. This character
ends getline's input. The character is eaten and the string is terminated. Example:
cin.getline(str, 100, '|')

• If cin.getline() is not provided a "stop" character as a third argument, it will
stop when it reaches a newline.

Given:

 float fl;
 cin >> fl;
 char str[101]
 cin.getline(str, 101);

1. And you type: 3.14<return>
2. 3.14 is read into fl . The newline following the 3.14 is still sitting on the input

buffer.
3. cin.getline(str, 101) immediately processes the newline that is still on the

input buffer. str becomes an empty string.
4. The illusion is that the application "skipped" the cin.getline() statement.

The solution is to add cin.ignore(); immediately after the first cin statement. This will
grab a character off of the input buffer (in this case, newline) and discard it.

cin.ignore() has 3 forms:

1. No arguments: A single character is taken from the input buffer and discarded:
cin.ignore(); //discard 1 character

2. One argument: The number of characters specified are taken from the input buffer
and discarded:
cin.ignore(33); //discard 33 characters

3. Two arguments: discard the number of characters specified, or discard characters
up to and including the specified delimiter (whichever comes first):
cin.ignore(26, '\n'); //ignore 26 characters or to a newline,
whichever comes first
Reading in numbers directly is problematic

• If cin is presented with input it cannot process, cin goes into a
"safe" state

• The input it cannot process is left on the input stream.
• All input will be ignored by cin until the "safe" state is

cleared: cin.clear()
• A routine that reads a number directly should:

1. Read in the number
2. Check to see that the input stream is still valid
3. If the input stream is not good (!cin)

1. Call cin.clear() to take the stream out of the "safe"
state.

2. Remove from the stream the input that caused the
problem: cin.ignore(...)

3. Get the input again if appropriate or otherwise
handle the error

Inputing numbers directly, version 1:

 #include <climits> //for INT_MAX
 float fl;
 int bad_input;
 do{
 bad_input=0;
 cin >> fl;
 if(!cin)
 {
 bad_input=1;
 cin.clear();
 cin.ignore(INT_MAX,'\n');
 }

 }while(bad_input);
Inputing numbers directly, version 2:

 #include <climits> //for INT_MAX
 float fl;
 while(!(cin >> fl))
 {
 cin.clear();
 cin.ignore(INT_MAX,'\n');
 }

A note on limits. In C++, rather than using INT_MAX, I should have
used:

#include
...
cin.ignore(numeric_limits::max(), '\n');
As of this writing, g++ does not support the limits header file, so the
c-style method of determining the maximum integer is used.
Using getline to input numbers is a more robust alternate
to reading numbers directly

#include <cstdlib>
...
int i;
float fl;
char temp[100];

cin.getline(temp, 100);
fl=atof(temp);
cin.getline(temp, 100);
i=atoi(temp);

• getline will read both strings and numbers without going into a
"safe" state.

• Include cstdlib to use the converter functions: ascii-to-integer
(atoi), ascii-to-long (atol), and ascii-to-float (atof).
Once a file is opened, it may be used exactly as cin is
used.

ifstream someVarName("data.txt");
float fl;
char temp[100];
someVarName.getline(temp, 100);
fl=atof(temp);
int i;
someVarName >> i;
When reading an entire file, embed the file input inside of
the loop condition

ifstream inf("data.txt");
char temp[100];
while(!inf.getline(temp, 100).eof())
{
 //process the line
}

• the loop will exit once the end of the file is reached
Getline can be told to stop grabbing input at any
designated character

char temp[100];
cin.getline(temp, 100, '|');

• If only two arguments are supplied to getline, getline will stop
at the end of the line (at the newline character).

• If three arguments are supplied to getline, getline will stop at
the character designated by the third argument.

• The stop character is not copied to the string.
• The stop character is "eaten" (removed from the input stream).
Delimited files can easily be read using a while loop and
getline.

Given data file:

 John|83|52.2
 swimming|Jefferson
 Jane|26|10.09

 sprinting|San Marin
Process using:

ifstream inf("data.txt");
char name[30];
while(!inf.getline(name, 30, '|').eof())
{
 Athlete* ap;
 char jersey_number[10];
 char best_time[10];
 char sport[40];
 char high_school[40];
 inf.getline(jersey_number, 10, '|'); #read thru pipe
 inf.getline(best_time, 10); #read thru newline
 inf.getline(sport, 40, '|'); #read thru pipe
 inf.getline(high_school, 40); #read thru newline
 ap = new Athlete(name, atoi(number), atof(best_time), sport,
high_school);
 //do something with ap

}

• In a delimited file, only the first field should be in the while
loop

• For each field: If the field is the last field in the line or the
only field in the line, be sure that getline stops at a newline
and not some other delimiter
Using C++-style strings
All of the previous examples have assumed that C-style strings (null-
terminated character arrays) were being used. C++ provides a string
class that, when combined with a particular "getline" function, can
dynamically resize to accomodate user input. In general, C++ strings
are preferred over C strings.

Here is the same code shown above, this time using C++ strings:

#include <string>
ifstream inf("data.txt");
string name;
while(!getline(inf, name, '|').eof())
{
 Athlete* ap;
 string jersey_number;
 string best_time;
 string sport;
 string high_school;
 getline(inf, jersey_number, '|'); #read thru pipe
 getline(inf, best_time); #read thru newline
 getline(inf, sport, '|'); #read thru pipe
 getline(inf, high_school); #read thru newline
 ap = new Athlete(name, atoi(number.c_str()),
 atof(best_time.c_str()), sport, high_school);

 //do something with ap

}

How to set the width of a printing field
Given: int one=4, two=44;

 cout << one << endl;
 //output: "4"

 cout << setw(2) << one << endl;
 //output: " 4"

 cout.fill('X');
 cout << setw(2) << one << endl;
 //output: "X4"

 cout.fill('X');
 cout << setw(2) << two << endl;
 //output: "44"

• The default fill character is a space.
• A common fill character when printing numbers is zero "0".
How to prepare the output stream to print fixed precision
numbers (3.40 instead of 3.4)

 cout.setf(ios::fixed, ios::floatfield);
 cout.setf(ios::showpoint);
 cout.precision(2);

