Git, Jira, Wicket, Gradle, Tableau Training Classes in Bryan, Texas

Learn Git, Jira, Wicket, Gradle, Tableau in Bryan, Texas and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Git, Jira, Wicket, Gradle, Tableau related training offerings in Bryan, Texas: Git, Jira, Wicket, Gradle, Tableau Training

We offer private customized training for groups of 3 or more attendees.

Git, Jira, Wicket, Gradle, Tableau Training Catalog

cost: contact us for pricing length: day(s)

Agile/Scrum Classes

cost: contact us for pricing length: 3 day(s)

Git Classes

cost: $ 790length: 2 day(s)
cost: $ 390length: 1 day(s)
cost: $ 790length: 2 day(s)

Gradle Classes

cost: $ 400length: 1.5 day(s)

Jira/Cofluence Classes

cost: $ 390length: 1 day(s)
cost: $ 890length: 2 day(s)

Tableau Classes

cost: $ 1090length: 2 day(s)
cost: $ 1090length: 2 day(s)

Wicket Classes

cost: $ 1190length: 3 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

Millions of people experienced the frustration and failures of the Obamacare website when it first launched. Because the code for the back end is not open source, the exact technicalities of the initial failings are tricky to determine. Many curious programmers and web designers have had time to examine the open source coding on the front end, however, leading to reasonable conclusions about the nature of the overall difficulties.

Lack of End to End Collaboration
The website was developed with multiple contractors for the front-end and back-end functions. The site also needed to be integrated with insurance companies, IRS servers, Homeland Security servers, and the Department of Veterans Affairs, all of whom had their own legacy systems. The large number of parties involved and the complex nature of the various components naturally complicated the testing and integration of each portion of the project.

The errors displayed, and occasionally the lack thereof, indicated an absence of coordination between the parties developing the separate components. A failed sign up attempt, for instance, often resulted in a page that displayed the header but had no content or failure message. A look at end user requests revealed that the database was unavailable. Clearly, the coding for the front end did not include errors for failures on the back end.

Bloat and the Abundance of Minor Issues
Obviously, numerous bugs were also an issue. The system required users to create passwords that included numbers, for example, but failed to disclose that on the form and in subsequent failure messages, leaving users baffled. In another issue, one of the pages intended to ask users to please wait or call instead, but the message and the phone information were accidentally commented out in the code.

While the front-end design has been cleared of blame for the most serious failures, bloat in the code did contribute to the early difficulties users experienced. The site design was heavy with Javascript and CSS files, and it was peppered with small coding errors that became particularly troublesome when users faced bottlenecks in traffic. Frequent typos throughout the code proved to be an additional embarrassment and were another indication of a troubled development process.

NoSQL Database
The NoSQL database is intended to allow for scalability and flexibility in the architecture of projects that will use it. This made NoSQL a logical choice for the health insurance exchange website. The newness of the technology, however, means personnel with expertise can be elusive. Database-related missteps were more likely the result of a lack of experienced administrators than with the technology itself. The choice of the NoSQL database was thus another complication in the development, but did not itself cause the failures.

Another factor of consequence is that the website was built with both agile and waterfall methodology elements. With agile methods for the front end and the waterfall methodology for the back end, streamlining was naturally going to suffer further difficulties. The disparate contractors, varied methods of software development, and an unrealistically short project time line all contributed to the coding failures of the website.

The interpreted programming language Python has surged in popularity in recent years. Long beloved by system administrators and others who had good use for the way it made routine tasks easy to automate, it has gained traction in other sectors as well. In particular, it has become one of the most-used tools in the discipline of numerical computing and analysis. Being put to use for such heavy lifting has endowed the language with a great selection of powerful libraries and other tools that make it even more flexible. One upshot of this development has been that sophisticated business analysts have also come to see the language as a valuable tool for those own data analysis needs.

Greatly appreciated for its simplicity and elegance of syntax, Python makes an excellent first programming language for previously non-technical people. Many business analysts, in fact, have had success growing their skill sets in this way thanks to the language's tractability. Long beloved by specialized data scientists, the iPython interactive computing environment has also attracted great attention within the business analyst’s community. Its instant feedback and visualization options have made it easy for many analysts to become skilled Python programmers while doing valuable work along the way.

Using iPython and appropriate notebooks for it, for example, business analysts can easily make interactive use of such tools as cohort analysis and pivot tables. iPython makes it easy to benefit from real-time, interactive researches which produce immediately visible results, including charts and graphs suitable for use in other contexts. Through becoming familiar with this powerful interactive application, business analysts are also exposing themselves in a natural and productive way to the Python programming language itself.

Gaining proficiency with this language opens up further possibilities. While interactive analytic techniques are of great use to many business analysts, being able to create fully functioning, independent programs is of similar value. Becoming comfortable with Python allows analysts to tackle and plumb even larger data sets than would be possible through an interactive approach, as results can be allowed to accumulate over hours and days of processing time.

This ability can sometime allow business analysts to address the so-called "Big Data" questions that can otherwise seem the sole province of specialized data scientists. More important than this higher level of independence, perhaps, is the fact that this increased facility with data analysis and handling allows analysts to communicate more effectively with such stakeholders. Through learning a programming language which allows them to begin making independent inroads into such areas, business analysts gain a better perspective on these specialized domains, and this allows them to function as even more effective intermediaries.

 

Related:

Who Are the Main Players in Big Data?

Python and Ruby, each with roots going back into the 1990s, are two of the most popular interpreted programming languages today. Ruby is most widely known as the language in which the ubiquitous Ruby on Rails web application framework is written, but it also has legions of fans that use it for things that have nothing to do with the web. Python is a big hit in the numerical and scientific computing communities at the present time, rapidly displacing such longtime stalwarts as R when it comes to these applications. It too, however, is also put to a myriad of other uses, and the two languages probably vie for the title when it comes to how flexible their users find them.

A Matter of Personality...


That isn't to say that there aren't some major, immediately noticeable, differences between the two programming tongues. Ruby is famous for its flexibility and eagerness to please; it is seen by many as a cleaned-up continuation of Perl's "Do What I Mean" philosophy, whereby the interpreter does its best to figure out the meaning of evening non-canonical syntactic constructs. In fact, the language's creator, Yukihiro Matsumoto, chose his brainchild's name in homage to that earlier language's gemstone-inspired moniker.

Python, on the other hand, takes a very different tact. In a famous Python Enhancement Proposal called "The Zen of Python," longtime Pythonista Tim Peters declared it to be preferable that there should only be a single obvious way to do anything. Python enthusiasts and programmers, then, generally prize unanimity of style over syntactic flexibility compared to those who choose Ruby, and this shows in the code they create. Even Python's whitespace-sensitive parsing has a feel of lending clarity through syntactical enforcement that is very much at odds with the much fuzzier style of typical Ruby code.

For example, Python's much-admired list comprehension feature serves as the most obvious way to build up certain kinds of lists according to initial conditions:

a = [x**3 for x in range(10,20)]
b = [y for y in a if y % 2 == 0]

first builds up a list of the cubes of all of the numbers between 10 and 19 (yes, 19), assigning the result to 'a'. A second list of those elements in 'a' which are even is then stored in 'b'. One natural way to do this in Ruby is probably:

a = (10..19).map {|x| x ** 3}
b = a.select {|y| y.even?}

but there are a number of obvious alternatives, such as:

a = (10..19).collect do |x|
x ** 3
end

b = a.find_all do |y|
y % 2 == 0
end

It tends to be a little easier to come up with equally viable, but syntactically distinct, solutions in Ruby compared to Python, even for relatively simple tasks like the above. That is not to say that Ruby is a messy language, either; it is merely that it is somewhat freer and more forgiving than Python is, and many consider Python's relative purity in this regard a real advantage when it comes to writing clear, easily understandable code.

And Somewhat One of Performance

If you’re interested in building modern websites or applications which use ASP, XML, or mobile technology, you’ve heard of Visual Studio .NET.  It is one of the more popular suites of development tools available to aspiring programmers, as it consolidates several different tools and languages into the same development environment, which helps in turn to integrate this code across development languages.  Here are three important benefits to using the visual studio suite:

·         Use of Visual J# - This development tool is specifically oriented towards people who already are familiar with basic Java syntax, and is designed for use by those people to build apps or services which will then run on the Microsoft .NET Framework.  This is useful because it fully supports Microsoft Extensions, among other reasons.  Visual J# was developed completely independently by Microsoft.

·         Utility for Smart Devices – Another huge benefit of using visual studio .NET is the ability to immediately integrate your programming efforts with deployment across a variety of smart devices.  PDAs, smartphones, Pocket PCs, and any device which has a limited amount of resources all require a compact framework for the programming of applications it is designed to run.

·         XML Web Usage and Support – Because XML services aren’t married to any particular technology or programming language, they can be accessed by any system, and this broad-based utility has made the services increasingly popular.  Visual Studio .NET takes advantage of this by fully integrating with XML services, including the ability to create and edit them from scratch.

Tech Life in Texas

Austin may be considered the live music capital of the world but the field of technology is becoming the new norm in the The Lone Star State. Home to Dell and Compaq computers, there is a reason why central Texas is often referred to as the Silicon Valley of the south. It’s rated third on the charts of the top computer places in the United States with a social learning and training IT atmosphere. Adding the fact that Austin offers fairly inexpensive living costs for students, software developers may take note as they look to relocate.
Building large applications is still really difficult. Making them serve an organization well for many years is almost impossible. Malcolm P Atkinson
other Learning Options
Software developers near Bryan have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Texas that offer opportunities for Git, Jira, Wicket, Gradle, Tableau developers
Company Name City Industry Secondary Industry
Dr Pepper Snapple Group Plano Manufacturing Nonalcoholic Beverages
Western Refining, Inc. El Paso Energy and Utilities Gasoline and Oil Refineries
Frontier Oil Corporation Dallas Manufacturing Chemicals and Petrochemicals
ConocoPhillips Houston Energy and Utilities Gasoline and Oil Refineries
Dell Inc Round Rock Computers and Electronics Computers, Parts and Repair
Enbridge Energy Partners, L.P. Houston Transportation and Storage Transportation & Storage Other
GameStop Corp. Grapevine Retail Retail Other
Fluor Corporation Irving Business Services Management Consulting
Kimberly-Clark Corporation Irving Manufacturing Paper and Paper Products
Exxon Mobil Corporation Irving Energy and Utilities Gasoline and Oil Refineries
Plains All American Pipeline, L.P. Houston Energy and Utilities Gasoline and Oil Refineries
Cameron International Corporation Houston Energy and Utilities Energy and Utilities Other
Celanese Corporation Irving Manufacturing Chemicals and Petrochemicals
HollyFrontier Corporation Dallas Energy and Utilities Gasoline and Oil Refineries
Kinder Morgan, Inc. Houston Energy and Utilities Gas and Electric Utilities
Marathon Oil Corporation Houston Energy and Utilities Gasoline and Oil Refineries
United Services Automobile Association San Antonio Financial Services Personal Financial Planning and Private Banking
J. C. Penney Company, Inc. Plano Retail Department Stores
Energy Transfer Partners, L.P. Dallas Energy and Utilities Energy and Utilities Other
Atmos Energy Corporation Dallas Energy and Utilities Alternative Energy Sources
National Oilwell Varco Inc. Houston Manufacturing Manufacturing Other
Tesoro Corporation San Antonio Manufacturing Chemicals and Petrochemicals
Halliburton Company Houston Energy and Utilities Energy and Utilities Other
Flowserve Corporation Irving Manufacturing Tools, Hardware and Light Machinery
Commercial Metals Company Irving Manufacturing Metals Manufacturing
EOG Resources, Inc. Houston Energy and Utilities Gasoline and Oil Refineries
Whole Foods Market, Inc. Austin Retail Grocery and Specialty Food Stores
Waste Management, Inc. Houston Energy and Utilities Waste Management and Recycling
CenterPoint Energy, Inc. Houston Energy and Utilities Gas and Electric Utilities
Valero Energy Corporation San Antonio Manufacturing Chemicals and Petrochemicals
FMC Technologies, Inc. Houston Energy and Utilities Alternative Energy Sources
Calpine Corporation Houston Energy and Utilities Gas and Electric Utilities
Texas Instruments Incorporated Dallas Computers and Electronics Semiconductor and Microchip Manufacturing
SYSCO Corporation Houston Wholesale and Distribution Grocery and Food Wholesalers
BNSF Railway Company Fort Worth Transportation and Storage Freight Hauling (Rail and Truck)
Affiliated Computer Services, Incorporated (ACS), a Xerox Company Dallas Software and Internet E-commerce and Internet Businesses
Tenet Healthcare Corporation Dallas Healthcare, Pharmaceuticals and Biotech Hospitals
XTO Energy Inc. Fort Worth Energy and Utilities Gasoline and Oil Refineries
Group 1 Automotive Houston Retail Automobile Dealers
ATandT Dallas Telecommunications Telephone Service Providers and Carriers
Anadarko Petroleum Corporation Spring Energy and Utilities Gasoline and Oil Refineries
Apache Corporation Houston Energy and Utilities Gasoline and Oil Refineries
Dean Foods Company Dallas Manufacturing Food and Dairy Product Manufacturing and Packaging
American Airlines Fort Worth Travel, Recreation and Leisure Passenger Airlines
Baker Hughes Incorporated Houston Energy and Utilities Gasoline and Oil Refineries
Continental Airlines, Inc. Houston Travel, Recreation and Leisure Passenger Airlines
RadioShack Corporation Fort Worth Computers and Electronics Consumer Electronics, Parts and Repair
KBR, Inc. Houston Government International Bodies and Organizations
Spectra Energy Partners, L.P. Houston Energy and Utilities Gas and Electric Utilities
Energy Future Holdings Dallas Energy and Utilities Energy and Utilities Other
Southwest Airlines Corporation Dallas Transportation and Storage Air Couriers and Cargo Services

training details locations, tags and why hsg

A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Texas since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Git, Jira, Wicket, Gradle, Tableau programming
  • Get your questions answered by easy to follow, organized Git, Jira, Wicket, Gradle, Tableau experts
  • Get up to speed with vital Git, Jira, Wicket, Gradle, Tableau programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Bryan, Texas Git, Jira, Wicket, Gradle, Tableau Training , Bryan, Texas Git, Jira, Wicket, Gradle, Tableau Training Classes, Bryan, Texas Git, Jira, Wicket, Gradle, Tableau Training Courses, Bryan, Texas Git, Jira, Wicket, Gradle, Tableau Training Course, Bryan, Texas Git, Jira, Wicket, Gradle, Tableau Training Seminar

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.