Security Training Classes in Wyoming, Michigan

Learn Security in Wyoming, Michigan and surrounding areas via our hands-on, expert led courses. All of our classes either are offered on an onsite, online or public instructor led basis. Here is a list of our current Security related training offerings in Wyoming, Michigan: Security Training

We offer private customized training for groups of 3 or more attendees.

Security Training Catalog

cost: $ 970length: 2 day(s)
cost: $ 2290length: 4 day(s)
cost: $ 2800length: 3 day(s)
cost: $ 2800length: 3 day(s)
cost: $ 2290length: 3 day(s)
cost: $ 690length: 1 day(s)
cost: $ 2290length: 3 day(s)

AWS Classes

JUnit, TDD, CPTC, Web Penetration Classes

cost: $ 690length: 2 day(s)

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

 Unlike traditional online courses that charge a fee, limit enrollment and provide credit or certification, Moocs (massive open online courses) are usually free or low cost and can host hundreds of  thousands global participants.  Although MOOC have been around for years in the form of collective techie learning gatherings, participation in 2012 has ballooned at a rapid pace likened to FaceBook in its heyday.  According to The Year of the MOOCarticle in the New YorkTimes, edX, a nonprofit start-up backed by Harvard and MIT, had 370,000 registrants in the fall of its first official courses. This paled in comparison to the amount of students that Courseraattained in its first year of online learning opportunities, 1.7 million!

Will MOOCs Replace education as we know it?

Like any new trend, massive participation in online classes has its challenges. Lynda Weinman has ample experience when pointing out that they are by no means a replacement for formal education.  As a former digital animator, special effects designer and classroom college teacher, Linda paved the path for an earlier version of MOOC education in the mid 90’s when she founded Lynda.comas an aide to her own students. Over four million students and 2,200 courses later she’s confident when clarifying that many of the collegespartnered with Lynda.com use the tutorials as added features to their existing courses.  When asked in an interview with ReadWriteBuilders, if high technical companies look at online programs in terms of advancement as a supplement to traditional education or as a way for people to further their careers, Lynda feels that “it’sjust one example of something that you can do to enhance your attractiveness to potential employers. But [it’s also important to have] a portfolio and body of work, references that actually work out, showing that you had success in the past.”

MOOC Benefits:

The original article was posted by Michael Veksler on Quora

A very well known fact is that code is written once, but it is read many times. This means that a good developer, in any language, writes understandable code. Writing understandable code is not always easy, and takes practice. The difficult part, is that you read what you have just written and it makes perfect sense to you, but a year later you curse the idiot who wrote that code, without realizing it was you.

The best way to learn how to write readable code, is to collaborate with others. Other people will spot badly written code, faster than the author. There are plenty of open source projects, which you can start working on and learn from more experienced programmers.

Readability is a tricky thing, and involves several aspects:

  1. Never surprise the reader of your code, even if it will be you a year from now. For example, don’t call a function max() when sometimes it returns the minimum().
  2. Be consistent, and use the same conventions throughout your code. Not only the same naming conventions, and the same indentation, but also the same semantics. If, for example, most of your functions return a negative value for failure and a positive for success, then avoid writing functions that return false on failure.
  3. Write short functions, so that they fit your screen. I hate strict rules, since there are always exceptions, but from my experience you can almost always write functions short enough to fit your screen. Throughout my carrier I had only a few cases when writing short function was either impossible, or resulted in much worse code.
  4. Use descriptive names, unless this is one of those standard names, such as i or it in a loop. Don’t make the name too long, on one hand, but don’t make it cryptic on the other.
  5. Define function names by what they do, not by what they are used for or how they are implemented. If you name functions by what they do, then code will be much more readable, and much more reusable.
  6. Avoid global state as much as you can. Global variables, and sometimes attributes in an object, are difficult to reason about. It is difficult to understand why such global state changes, when it does, and requires a lot of debugging.
  7. As Donald Knuth wrote in one of his papers: “Early optimization is the root of all evil”. Meaning, write for readability first, optimize later.
  8. The opposite of the previous rule: if you have an alternative which has similar readability, but lower complexity, use it. Also, if you have a polynomial alternative to your exponential algorithm (when N > 10), you should use that.

Use standard library whenever it makes your code shorter; don’t implement everything yourself. External libraries are more problematic, and are both good and bad. With external libraries, such as boost, you can save a lot of work. You should really learn boost, with the added benefit that the c++ standard gets more and more form boost. The negative with boost is that it changes over time, and code that works today may break tomorrow. Also, if you try to combine a third-party library, which uses a specific version of boost, it may break with your current version of boost. This does not happen often, but it may.

Don’t blindly use C++ standard library without understanding what it does - learn it. You look at std::vector::push_back() documentation at it tells you that its complexity is O(1), amortized. What does that mean? How does it work? What are benefits and what are the costs? Same with std::map, and with std::unordered_map. Knowing the difference between these two maps, you’d know when to use each one of them.

Never call new or delete directly, use std::make_unique and [cost c++]std::make_shared[/code] instead. Try to implement usique_ptr, shared_ptr, weak_ptr yourself, in order to understand what they actually do. People do dumb things with these types, since they don’t understand what these pointers are.

Every time you look at a new class or function, in boost or in std, ask yourself “why is it done this way and not another?”. It will help you understand trade-offs in software development, and will help you use the right tool for your job. Don’t be afraid to peek into the source of boost and the std, and try to understand how it works. It will not be easy, at first, but you will learn a lot.

Know what complexity is, and how to calculate it. Avoid exponential and cubic complexity, unless you know your N is very low, and will always stay low.

Learn data-structures and algorithms, and know them. Many people think that it is simply a wasted time, since all data-structures are implemented in standard libraries, but this is not as simple as that. By understanding data-structures, you’d find it easier to pick the right library. Also, believe it or now, after 25 years since I learned data-structures, I still use this knowledge. Half a year ago I had to implemented a hash table, since I needed fast serialization capability which the available libraries did not provide. Now I am writing some sort of interval-btree, since using std::map, for the same purpose, turned up to be very very slow, and the performance bottleneck of my code.

Notice that you can’t just find interval-btree on Wikipedia, or stack-overflow. The closest thing you can find is Interval tree, but it has some performance drawbacks. So how can you implement an interval-btree, unless you know what a btree is and what an interval-tree is? I strongly suggest, again, that you learn and remember data-structures.

These are the most important things, which will make you a better programmer. The other things will follow.

The interpreted programming language Python has surged in popularity in recent years. Long beloved by system administrators and others who had good use for the way it made routine tasks easy to automate, it has gained traction in other sectors as well. In particular, it has become one of the most-used tools in the discipline of numerical computing and analysis. Being put to use for such heavy lifting has endowed the language with a great selection of powerful libraries and other tools that make it even more flexible. One upshot of this development has been that sophisticated business analysts have also come to see the language as a valuable tool for those own data analysis needs.

Greatly appreciated for its simplicity and elegance of syntax, Python makes an excellent first programming language for previously non-technical people. Many business analysts, in fact, have had success growing their skill sets in this way thanks to the language's tractability. Long beloved by specialized data scientists, the iPython interactive computing environment has also attracted great attention within the business analyst’s community. Its instant feedback and visualization options have made it easy for many analysts to become skilled Python programmers while doing valuable work along the way.

Using iPython and appropriate notebooks for it, for example, business analysts can easily make interactive use of such tools as cohort analysis and pivot tables. iPython makes it easy to benefit from real-time, interactive researches which produce immediately visible results, including charts and graphs suitable for use in other contexts. Through becoming familiar with this powerful interactive application, business analysts are also exposing themselves in a natural and productive way to the Python programming language itself.

Gaining proficiency with this language opens up further possibilities. While interactive analytic techniques are of great use to many business analysts, being able to create fully functioning, independent programs is of similar value. Becoming comfortable with Python allows analysts to tackle and plumb even larger data sets than would be possible through an interactive approach, as results can be allowed to accumulate over hours and days of processing time.

This ability can sometime allow business analysts to address the so-called "Big Data" questions that can otherwise seem the sole province of specialized data scientists. More important than this higher level of independence, perhaps, is the fact that this increased facility with data analysis and handling allows analysts to communicate more effectively with such stakeholders. Through learning a programming language which allows them to begin making independent inroads into such areas, business analysts gain a better perspective on these specialized domains, and this allows them to function as even more effective intermediaries.

 

Related:

Who Are the Main Players in Big Data?

 

I suspect that many of you are familiar with the term "hard coding a value" whereby the age of an individual or their location is written into the condition (or action) of a business rule (in this case) as shown below:

if customer.age > 21 and customer.city == 'denver'

then ...

Such coding practices are perfectly expectable provided that the conditional values, age and city, never change. They become entirely unacceptable if a need for different values could be anticipated. A classic example of where this practice occurred that caused considerable heartache in the IT industry was the Y2K issue where dates were updated using only the last 2 digits of a four digit number because the first 2 digits were hard-coded to 19 i.e. 1998, 1999. All was well provided that the date did not advance to a time beyond the 1900’s since no one could be certain of what would happen when the millennia arrived (2000). A considerably amount of work (albeit boring) and money, approximately $200 billion, went into revising systems by way of software rewrites and computer chip replacements in order to thwart any detrimental outcomes. It is obvious how a simple change or an assumption can have sweeping consequences.

You may wonder what Y2K has to do with Business Rule Management Systems (BRMS). Well, what if we considered rules themselves to be hard-coded. If we were to write 100s of rules in Java, .NET or whatever language that only worked for a given scenario or assumption, would that not constitute hard-coded logic? By hard-coded, we obviously mean compiled. For example, if a credit card company has a variety of bonus campaigns, each with their own unique list of rules that may change within a week’s time, what would be the most effective way of writing software to deal with these responsibilities?

Tech Life in Michigan

Home of the Ford Motor Company and many other Fortune 500 and Fortune 1000 Companies, Michigan has a list of famous people that have made their mark on society. Famous Michiganians: Francis Ford Coppola film director; Henry Ford industrialist, Earvin Magic Johnson basketball player; Charles A. Lindbergh aviator; Madonna singer; Stevie Wonder singer; John T. Parsons inventor and William R. Hewlett inventor.
There is a fountain of youth: it is your mind, your talents, the creativity you bring to your life and the lives of people you love. When you learn to tap this source, you will truly have defeated age. Sophia Loren
other Learning Options
Software developers near Wyoming have ample opportunities to meet like minded techie individuals, collaborate and expend their career choices by participating in Meet-Up Groups. The following is a list of Technology Groups in the area.
Fortune 500 and 1000 companies in Michigan that offer opportunities for Security developers
Company Name City Industry Secondary Industry
Lear Corporation Southfield Manufacturing Automobiles, Boats and Motor Vehicles
TRW Automotive Holdings Corp. Livonia Manufacturing Automobiles, Boats and Motor Vehicles
Spartan Stores, Inc. Byron Center Retail Grocery and Specialty Food Stores
Steelcase Inc. Grand Rapids Manufacturing Furniture Manufacturing
Valassis Communications, Inc. Livonia Business Services Advertising, Marketing and PR
Autoliv, Inc. Auburn Hills Manufacturing Automobiles, Boats and Motor Vehicles
Cooper-Standard Automotive Group Novi Manufacturing Automobiles, Boats and Motor Vehicles
Penske Automotive Group, Inc. Bloomfield Hills Retail Automobile Dealers
Con-Way Inc. Ann Arbor Transportation and Storage Freight Hauling (Rail and Truck)
Meritor, Inc. Troy Manufacturing Automobiles, Boats and Motor Vehicles
Visteon Corporation Van Buren Twp Manufacturing Automobiles, Boats and Motor Vehicles
Affinia Group, Inc. Ann Arbor Manufacturing Automobiles, Boats and Motor Vehicles
Perrigo Company Allegan Healthcare, Pharmaceuticals and Biotech Pharmaceuticals
BorgWarner Inc. Auburn Hills Manufacturing Automobiles, Boats and Motor Vehicles
Auto-Owners Insurance Lansing Financial Services Insurance and Risk Management
DTE Energy Company Detroit Energy and Utilities Gas and Electric Utilities
Whirlpool Corporation Benton Harbor Manufacturing Tools, Hardware and Light Machinery
Herman Miller, Inc. Zeeland Manufacturing Furniture Manufacturing
Universal Forest Products Grand Rapids Manufacturing Furniture Manufacturing
Masco Corporation Inc. Taylor Manufacturing Concrete, Glass, and Building Materials
PULTEGROUP, INC. Bloomfield Hills Real Estate and Construction Real Estate & Construction Other
CMS Energy Corporation Jackson Energy and Utilities Energy and Utilities Other
Stryker Corporation Portage Healthcare, Pharmaceuticals and Biotech Medical Devices
General Motors Company (GM) Detroit Manufacturing Automobiles, Boats and Motor Vehicles
Kellogg Company Battle Creek Manufacturing Food and Dairy Product Manufacturing and Packaging
The Dow Chemical Company Midland Manufacturing Chemicals and Petrochemicals
Kelly Services, Inc. Troy Business Services HR and Recruiting Services
Ford Motor Company Dearborn Manufacturing Automobiles, Boats and Motor Vehicles

training details locations, tags and why hsg

the hartmann software group advantage
A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations in Michigan since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about Security programming
  • Get your questions answered by easy to follow, organized Security experts
  • Get up to speed with vital Security programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
Wyoming, Michigan Security Training , Wyoming, Michigan Security Training Classes, Wyoming, Michigan Security Training Courses, Wyoming, Michigan Security Training Course, Wyoming, Michigan Security Training Seminar

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.